BALLARI INSTITUTE OF TECHNOLOGY & MANAGEMENT

(Autonomous Institute under Visvesvaraya Technological University, Belagavi)

USN											Course Code	M	В	A	2	0	4
-----	--	--	--	--	--	--	--	--	--	--	--------------------	---	---	---	---	---	---

Second Semester MBA Degree Examinations, August/September 2025

OPERATIONS RESEARCH

Duration: 3 hrs Max. Marks: 100

Note: 1. Answer any FOUR full questions from Question No. 1 to 7.

2. Question No. 8 is compulsory

3. Missing data, if any, may be suitably assumed

<u>Q.</u>	<u>No</u>		ϱ	<u>uestion</u>			<u>Marks</u>	(RBTL:CO:PO)		
1.	a.	What are the usefulness of	of the obje	ective fun	ction in I	LPP?	03	(2:1:2)		
	b.	What are the salient charausefulness of it.	acteristics	of opera	tions rese	earch? Derive the	07	(2:1:2)		
	c.	What are different of pha	ses in ope	eration re	search, w	rite its application.	10	(3:1:2)		
2.	a.	Analyse the concept of op	otimal so	lution. Ill	ustrate wi	ith example.	03	(3:1:2)		
	b.	Analyse critically to fo	07	(3:2:2)						
		ONLY: Anita electrica Products are produced an cannot exceed 25 for pro available facilities. The c requires 2 man-week of labour. Profit margin on labour.								
	c.	Analyse the following lin				graphically.	10	(4:2:4)		
		Minimize $Z_{Min} = 5x + 8y$	•			40				
3.		_	-	,	•	$10 x \ge 0, y \ge 0.$	03	(2:1:5)		
3.	a.	Briefly examine the key of				•		,		
	b.	Evaluate the concept of dillustrate with example.	lecision u	nder unce	ertainty- I	Max min & Min max,	07	(4:2:3)		
	c.	Write the steps in sim	ulation b	y Monte	e Carlo 1	technique, write you	10	(4:2:4)		
		conclusion of the techniq								
4.	a.									
		IBFS(Initial Basic Feasib								
		0.4	D1 7	D2 6	D3	Supply 20				
		<u>S1</u>								
		S2	5	7	3	28				
		S3	4	5 25	8 19	17				
		Demand	21	25	19					

	Demand	21	25	19			
b.	Design the transportation	problem	by trans	portation	problem by NORTH	07	(3:3:4)
	WEST CORNER metho	od to find	l IBFS(Ir	nitial Basi	ic Feasible Solution)		

	D1	D2	D3	D4	Supply
S1	19	30	50	10	7
S2	70	30	40	60	9
S3	40	8	70	20	18
Demand	5	8	7	14	

c. Design the transportation problem by using **VAM** for feasible solution.

	D1	D2	D3	Supply (S)
S1	4	8	8	76
S2	16	24	16	82
S3	8	16	24	77
Demand (D)	72	102	41	215

5. a. Design the significance of pure strategy and mixed strategy appropriate business situation

03 (3:3:4)

(5:3:4)

(3:4:2)

10

10

b. Design the value of the game by using dominance property for two players A and B with the payoff Matrix

07 (3:4:2)

]	Plaver <i>B</i>
		<i>B</i> 1	B2	В3
Player A	<i>A</i> 1	10	5	-2
	A2	13	12	15
	<i>A</i> 3	16	14	10

c. A political party has to contest election in five constituencies. It has five contestants and thinking of which contestant to contest in which constituency. It has estimated the chances of winning on a 14 point scale. The chance of winning of each contestant in each constituency is given in the following matrix. **Design** the assignment of which contestant has to contest in which constituency so as to maximize the chance of winning.

		Constituency											
		D1	D2	D3	D4	D5							
ant	A	5	11	10	12	4							
ste	В	2	4	6	3	5							
ontestan	С	3	12	5	14	6							
ပိ	D	6	14	4	11	7							
_	E.	7	9	8	12	12							

6. a. Write frame work for phases of project management-planning, scheduling, controlling phase in project management.

03 (3:4:2)

b. Construct the networking diagram with (i) Activity on Arrow (AOA) for overview of the project.

07 (3:5:2)

S.No.	1	2	3	4	5	6	7	8	9	10	11
Activity	A	В	С	D	Е	F	G	Н	I	J	K
Immediate Predecessor Activity	-	-	A	В	В	A	С	D	A	E,G,H	F,I,J

c. Design the project network diagram and determine the critical path and duration and free, total and independent float for the data given below:

10 (3:5:2)

			8							
S.N	1	2	3	4	5	6				
Activity	1-2	2-3	2-4	3-5	4-5	5-6				
Duration D _{ij}	3	4	5	4	8	6				

7. a. What is zero sum game in game theory? Evaluate its significance

03 (4:6:4)

b. Design the solution of game theory problem using **dominance** method **07** (4:6:4)

		Player B					
		<i>B</i> 1	B2	<i>B</i> 3			
Player A	A1	1	7	2			
	A2	6	2	7			
	A3	5	1	6			

c. Design a game strategy by considering the payoff matrix of Player A. as 10 (5:6:4) shown below and solve it optimally using **graphical method**.

		Player B	
		1	2
	1	6	-7
er ,	2	1	3
lay	3	3	1
Ξ	4	5	-1

8. <u>Case Study</u> 20 (5:5:5)

Design the transportation problem by using VAM for feasible solution. Find the optimal Solution by using MODI method.

	D1	D2	D3	D4	Supply (S)
S1	13	7	19	0	200
S2	17	18	15	7	500
S3	11	22	14	5	300
Demand (D)	180	320	100	400	_

** ** **