BALLARI INSTITUTE OF TECHNOLOGY & MANAGEMENT

(Autonomous Institute under Visvesvaraya Technological University, Belagavi)

USN						Course Code	2	2	P	Н	Y	E	12	/	22
									_		_			,	

First / Second Semester B.E. Degree Summer Semester Examinations, September/October 2025

PHYSICS FOR ELECTRICAL & ELECTRONICS ENGINEERING STREAM

Duration: 3 hrs Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

- 2. Use of Physics Formula Handbook is permitted.
- 3. Missing data, if any, may be suitably assumed.

<u>Q.</u>	<u>No</u>	<u>Question</u>	<u>Marks</u>	(RBTL:CO:PI)					
		MODULE – 1							
1.	a.	State and explain Heisenberg's uncertainty principle. Show that electron	08	(2:1:1.1.1)					
		does not exist inside the nucleus by this principle.							
	b.	Starting from Schrödinger's time independent wave equation, derive the	08	(2:1:1.1.1)					
		expression for energy Eigen values for an electron in one-dimensional							
		potential well of infinite height.							
	c.	Electron is bound in one-dimensional potential well of infinite height and	04	(3:1:1.2.1)					
		width of 0.2 Å, Calculate its energy values in the ground state and in the							
		first two excited states.							
(OR)									
2.	a.	Explain de-Broglie hypothesis, de-Broglie wave length by analogy and	08	(2:1:1.1.1)					
		derive de-Broglie wavelength for an electrons.							
	b.	Define phase velocity, group velocity and hence derive the expression for	08	(2:1:1.1.1)					
		group velocity.							
	c.	A particle of mass 0.6 M eV/C ² has kinetic energy 120 eV. Calculate its	04	(3:1:1.2.1)					
		de Broglie wavelength, where C is velocity of light.							
		$\underline{MODULE-2}$							
3.	a.	Derive the expression for internal fields in solid and liquid dielectrics.	08	(2:2:1.1.1)					
	b.	Explain qualitatively BCS theory of superconductors.	08	(2:2:1.1.1)					
	c.	The polarizability of neon gas atom is 0.35×10^{-40} Fm, if the gas	04	(3:2:1.2.1)					
		contains 2.7×10^{28} atoms/m ³ . Calculate its relative dielectric constant.							
		(OR)	0.0	(0.0.1.1)					
4.	a.	Explain type – I and type – II superconductor based on magnetisation	08	(2:2:1.1.1)					
	-	curve with examples.	0.0	(0.0.4.4.1)					
	b.	Explain Meglev vehicle and SQUID briefly.	08	(2:2:1.1.1)					
	c.	A superconducting tin has critical temperature of 3.7 K at zero magnetic	04	(3:2:1.2.1)					
		field and a critical field of 0.0306 Tesla at 0 K. Calculate the critical field at 2 K.							
5	-	MODULE - 3 Evaluing the terms induced character enorthness amission and	ΛO	(2.2.1 1 1)					
5.	a.	Explain the terms induced absorption, spontaneous emission and	08	(2:3:1.1.1)					
		stimulated emission with energy level diagram.							

	b.	Explain the principle, construction and working of semiconductor laser with neat diagrams.	08	(2:3:1.1.1)
	c.	The average output power laser source emitting a laser beam of wavelength 632.8 nm is 5 mW. Calculate the number of photons emitted per second by the laser source.	04	(3:3:1.2.1)
		(OR)		
6.	a.	Explain numerical aperture and acceptance angle and derive the relation for numerical aperture and acceptance angle of an optical fibre.	08	(2:3:1.1.1)
	b.	Describe different types of optical fibre with neat diagrams for geometry,	08	(2:3:1.1.1)
		refractive index profile and propagation of waves.		
	c.	The refractive indices of core and cladding are 1.50 and 1.48 respectively	04	(3:3:1.2.1)
		in an optical fibre. Calculate the numerical aperture and acceptance angle.	V -	(0.00121212)
		$\underline{MODULE-4}$		
7.	a.	Derive the expression for conductivity in semiconducting materials.	05	(2:4:1.1.1)
	b.	Derive the expression for Fermi level in intrinsic semiconductor.	05	(2:4:1.1.1)
	c.	Describe an experiment to determine the dielectric constant of a dielectric	10	(3:5:1.2.1)
		material by charging and discharging of a capacitor.		
		(OR)		
8.	a.	What is Hall effect? Derive the expression for Hall coefficient of a semiconductor.	05	(1:4:1.1.1)
	b.	Explain the construction, working of a photodiode with I-V characteristics and power responsivity.	05	(2:4:1.1.1)
	c.	Describe an experiment to determine the knee voltage, Zener breakdown	10	(3:5: .1.3)
		voltage in laboratory.	10	(0.01.110)
		$\underline{\mathbf{MODULE} - 5}$		
9.	a.	Explain the gauss law, ampere law and faradays laws of electromagnetic.	05	(2:4:1.1.1)
	b.	Derive the wave equation in differential form in free space using	05	(2:4:1.1.1)
		Maxwell's equations.		
	c.	Describe an experiment to determine resonant frequency and quality	10	(3:5:2.1.3)
		factor of LCR series and parallel circuits.		
		(OR)		
10.	a.	State the gauss divergence theorem and stokes theorem of vector calculus.	05	(3:4:1.1.1)
	b.	Derive the expression for displacement current of dielectric material.	05	(2:4:1.1.1)
	c.	Describe an experiment to determine the wavelength of Hg source using	10	(3:5:2.1.3)
	-•	diffraction gratting.		()

** ** **