Max. Marks: 100

BALLARI INSTITUTE OF TECHNOLOGY & MANAGEMENT

(Autonomous Institute under Visvesvaraya Technological University, Belagavi)

USN | Course Code | 2 | 2 | M | A | T | S | 2 | 1

Second Semester B.E. Degree Summer Semester Examinations, September/October 2025

MATHEMATICS-II FOR COMPUTER SCIENCE & ENGINEERING STREAM

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

- 2. Use of Mathematics Formula Handbook is permitted.
- 3. Missing data, if any, may be suitably assumed.

Duration: 3 hrs

<u>Q. No</u>		<u>Question</u>	<u>Marks</u>	(RBTL:CO:PI)
		Module-1		
1.	a.	Find the angle between the surface $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$	06	(2:1:1.2.1)
		at $(2,-1,2)$.		
	b.	If $\vec{F} = (x+y+1)i + j - (x+y)k$, show that \vec{F} . curl $\vec{F} = 0$.	07	(2:1:1.2.1)
	c.	Show that $\vec{F} = (y+z)i + (z+x)j + (x+y)k$ is irrotational and hence	07	(2:1:1.2.1)
		find a scalar function ϕ such that $\vec{F} = \nabla \phi$.		
		(OR)		
2.	a.	Find the scale factors for cylindrical system.	06	(2:1:1.2.1)
	b.	Prove the spherical polar co-ordinate system is orthogonal.	07	(2:1:1.2.1)
	c.	Express the vector $\overline{A} = zi - 2xj + yk$ in cylindrical co-ordinates.	07	(2:1:1.2.1)
		Module-2		
3.	a.	Solve $\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 8y = 0$	06	(2:2:1.2.1)
		Solve $\left(D^2 + 5D + 6\right)y = e^x$	07	(2:2:1.2.1)
	c.	Solve $y'' - 4y' + 13y = \sin 2x$	07	(2:2:1.2.1)
		(OR)		
4.	a.	Solve $(D^2 + 3D + 2)y = 1 + 3x + x^2$.	06	(2:2:1.2.1)
	b.	Solve $x^2y'' + xy' + 9y = 3x^2 + \sin(3\log x)$.	07	(2:2:1.2.1)
	c.	Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = \sin 2[\log(1+x)].$	07	(2:2:1.2.1)
5.	a.	Module-3 Find the Laplace transform of the following functions: (i) $e^{-2t} \sinh 4t$ (ii) t cos at	06	(2:3:1.2.1)
	b.	Find the Laplace transform of $2^t + \frac{\cos 2t - \cos 3t}{t}$	07	(2:3:1.2.1)

C. If
$$f(t) = \begin{cases} E, & 0 < t < a \\ -E, & a < t < 2a \end{cases}$$
, show that $L[f(t)] = \frac{E}{s} \tanh\left(\frac{as}{2}\right)$.

6. a. Find the inverse Laplace transform of the function $\frac{4s+5}{(s+1)^2(s+2)}$.

b. Using convolution theorem, obtain the inverse Laplace transform of the **07** (2:3:1.2.1) function $\frac{s}{\left(s^2+a^2\right)^2}$.

Using Laplace Transform technique, solve $y''-2y'+y=e^{2t}$ subject to the conditions, y(0)=0, y'(0)=-1.

Module-4

7. **a.** Use Newton-Raphson method to find the real root of the equation 06 (2:4:1.2.1) $x \sin x + \cos x = 0$ near $x = \pi$. Carry out three iterations.

b. Use Newton's forward interpolation formula to find f(38) 07 (2:4:1.2.1)

-	х	40	50	60	70	80	90
	f(x)	184	204	226	250	276	304

c. From the following table find the number of students who have obtained (2:4:1.2.1) (i) less than 45 marks (ii) between 40 and 45 marks by using appropriate interpolation formula.

Marks	30-40	40-50	50-60	60-70	70-80
Number of students	31	42	51	35	31
(OR)					

8. a. Using Newton's divided difference formula to find f(4) given 06 (2:4:1.2.1)

x	0	2	3	6
f(x)	-4	2	14	158

b. Use Lagrange's interpolation formula to find f(4) given 07 (2:4:1.2.1)

x	0	1	2	5
f(x)	2	3	12	147

c. Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ taking seven ordinates by applying Simpson's $3/8^{th}$ rule. 07 (2:4:1.2.1)

Hence deduce the value of $\log_e 2$.

Module-5

9. **a.** Use Taylor's series method to find y at x = 0.1, considering terms up to **06** (2:5:1.2.1) the third degree given that $\frac{dy}{dx} - 2y = 3e^x$, y(0) = 0

- **b.** Using Modified Euler's method find y(0.1), correct to four decimal **07** (2:5:1.2.1) places solving the equation $\frac{dy}{dx} = x y^2$, y(0) = 1 taking h = 0.1.
- Given $\frac{dy}{dx} = 3x + \frac{y}{2}$, y(0) = 1, compute y(0.2) by taking h = 0.2 using

 Runge-Kutta method of fourth order.

(OR)

- **10. a.** Use Taylor's series method to find y at x=0.1 considering terms up to 3^{rd} **06** (2:5:1.2.1) degree given that $\frac{dy}{dx} = x^2 + y^2$ and y (0) =1.
 - **b.** Using modified Euler's method to find y(0.1) correct to four decimal **07** (2:5:1.2.1) places solving the equation $\frac{dy}{dx} = x y^2$, y(0)=1 taking h=0.1
 - Given $\frac{dy}{dx} = 3x + \frac{y}{2}$, y(0)=1, compute y(0.2) by taking h=0.2 using

 Range-Kutta method of fourth order.

** ** **