BALLARI INSTITUTE OF TECHNOLOGY & MANAGEMENT

(Autonomous Institute under Visvesvaraya Technological University, Belagavi)

USN Course Code 2 | M| A | T | $\mathbf{M} \mathbf{2}$

Second Semester B.E. Degree Summer Semester Examinations, September/October 2025

MATHEMATICS-II FOR MECHANICAL ENGINEERING STREAM

Duration: 3 hrs Max. Marks: 100

- 1. Answer any FIVE full questions, choosing ONE full question from each module. Note:

2. Use of Mathematics Formula Handbook is permitted.3. Missing data, if any, may be suitably assumed.									
<i>Q. No</i>		<u>Question</u>		(RBTL:CO:PI)					
		Module-1							
1.	a.	Find the directional derivatives of $\phi = x^2yz + 4xz^2$ at $(1, -2, -1)$ along	06	(2:1:1.2.1)					
		the vector $2i - j - 2k$.							
	b.	If $\vec{F} = (3x^2y - z)i + (xz^3 + y^4)j - 2x^3z^2k$, find grad (div \vec{F}) at (2,-1,0).	07	(2:1:1.2.1)					
	c.	Show that $\vec{F} = (y+z)i + (z+x)j + (x+y)k$ is irrotational and hence	07	(2:1:1.2.1)					
		find a scalar function ϕ such that $\overrightarrow{F} = \nabla \phi$.							
		(OR)							
2.	a.	Evaluate $\int_{c} (3x^2 - 8y^2) dx + (4y - 6xy) dy$, by Green's theorem in a	06	(2:1:1.2.1)					
		plane, where C is the boundary of the region enclosed by $y = \sqrt{x}$ and							
		$y = x^2$.							
	b.	Find the total work done by the force represented by $\vec{F} = 3xyi - yj + 2zxk$	07	(2:1:1.2.1)					
		in moving a particle round the circle $x^2 + y^2 = 4$.							
	c.	Evaluate $\int_{c} \vec{F} \cdot d\vec{r}$ where $\vec{F} = (x^2 + y^2)i - 2xyj$ by Stoke's theorem taken	07	(2:1:1.2.1)					
		round the rectangle bounded by $x = 0$, $x = a$, $y = 0$, $y = b$.							
		Module-2							
3.	a.	Solve $\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 8y = 0$	06	(2:2:1.2.1)					
			07	(2:2:1.2.1)					
	~*	Solve $\left(D^2 + 5D + 6\right)y = e^x$	ν.	(======)					
	c.	Solve $y'' - 4y' + 13y = \sin 2x$	07	(2:2:1.2.1)					
(OR)									
4.	a.	Solve $\left(D^2 - 4D + 3\right)y = \sin 3x \cos 2x$.	06	(2:2:1.2.1)					
	b.	Solve $x^2y'' + xy' + 9y = 3x^2 + \sin(3\log x)$	07	(2:2:1.2.1)					
	c.	Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = \sin 2[\log(1+x)].$	07	(2:2:1.2.1)					
		un							

Module-3

- **5. a.** Form the Partial differential equation by eliminating the arbitrary **06** (2:3:1.2.1) constants from $(x-a)^2 + (y-b)^2 + z^2 = c^2$.
 - Solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$, given that $\frac{\partial z}{\partial y} = -2 \sin y$ when x = 0 and (2:3:1.2.1)

z = 0 when y is an odd multiple of $\frac{\pi}{2}$.

c. Solve $\frac{\partial^2 z}{\partial y^2} = z$, given that when y = 0, $z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$.

(OR)

- **6. a.** Form the PDE eliminating the arbitrary function from **06** (2:3:1.2.1) $z = y^2 + 2f \left[\frac{1}{x} + \log y \right]$
 - **b.** Solve $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial x} = z$. **07** (2:3:1.2.1)
 - c. Derive one-dimensional wave equation in the standard form. 07 (2:3:1.2.1)

Module-4

- 7. **a.** Use Newton-Raphson method to find the real root of the equation 06 $x \sin x + \cos x = 0$ near $x = \pi$. Carry out three iterations.
 - **b.** Use Newton's forward interpolation formula to find f(38) 07 (2:4:1.2.1)

х	40	50	60	70	80	90
f(x)	184	204	226	250	276	304

c. From the following table find the number of students who have obtained
(i) less than 45 marks (ii) between 40 and 45 marks by using appropriate interpolation formula.

(2:4:1.2.1)

Marks	30-40	40-50	50-60	60-70	70-80
No. of students	31	42	51	35	31
(OR)					

- **8. a.** Using Newton's divided difference formula to find f(4) given

 - **b.** Use Lagrange's interpolation formula to find f(4) given 07 (2:4:1.2.1)

0 1		v () C				
x	0	1	2	5		
f(x)	2	3	12	147		

c. Evaluate $\int_0^1 \frac{dx}{1+x}$ taking seven ordinates by applying Simpson's $3/8^{th}$ rule. Hence deduce the value of $\log_e 2$.

06

(2:4:1.2.1)

Module-5

- 9. **a.** Use Taylor's series method to find y at x = 0.1 considering terms up to **06** (2:5:1.2.1) the third degree given that $\frac{dy}{dx} 2y = 3e^x$, y(0)=0
 - **b.** Using Modified Euler's method find y(0.1) correct to four decimal places **07** (2:5:1.2.1) solving the equation $\frac{dy}{dx} = x y^2$, y(0)=1 taking h= 0.1
 - Given $\frac{dy}{dx} = 3x + \frac{y}{2}$, y(0) = 1, compute y(0.2) by taking h=0.2 using

 Runge-Kutta method of fourth order

(OR)

- **10. a.** Use Taylor's series method to find y at x=0.1 considering terms up to 3^{rd} **06** (2:5:1.2.1) degree given that $\frac{dy}{dx} = x^2 + y^2$ and y (0) =1.
 - **b.** Using modified Euler's method to find y(0.1) correct to four decimal **07** (2:5:1.2.1) places solving the equation $\frac{dy}{dx} = x y^2$, y(0)=1 taking h=0.1
 - Given $\frac{dy}{dx} = 3x + \frac{y}{2}$, y(0)=1, compute y(0.2) by taking h=0.2 using

 Range-Kutta method of fourth order.

** ** **