BALLARI INSTITUTE OF TECHNOLOGY & MANAGEMENT

(Autonomous Institute under Visvesvaraya Technological University, Belagavi)

USN Course Code 2 2 M A T E 2 1

Second Semester B.E. Degree Summer Semester Examinations, September/October 2025

MATHEMATICS-II FOR ELECTRICAL & ELECTRONICS ENGINEERING STREAM

Duration: 3 hrs

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

- 2. Use of Mathematics Formula Handbook is permitted.
- 3. Missing data, if any, may be suitably assumed.

<u>Q. No</u>		<u>Question</u>	<u>Marks</u>	(RBTL:CO:PI)
1.	a.	Find the directional derivatives of $\emptyset = x^2yz + 4xz^2$ at $(1, -2, -1)$ along $2i - j - 2k$.	06	(2:1:1.2.1)
	b.	If $\vec{r} = xi + yj + zk$ and $r = \vec{r} $ prove that $\nabla(r^n) = nr^{n-2}\vec{r}$	07	(2:1:1.2.1)
	c.	Show that $\vec{F} = (y+z)i + (z+x)j + (x+y)k$ is irrotational and	07	(2:1:1.2.1)
		hence find a scalar function \emptyset such that $\vec{F} = \nabla \emptyset$		
		(OR)		
2.	a.	Find the total work done by the force represented by	06	(2:1:1.2.1)
		$\vec{F} = 3xyi - yj + 2zxk$ in moving a particle round the circle		
		$x^2 + y^2 = 4$		
	b.	Evaluate $\int_C (xy + y^2)dx + x^2dy$ by Green's theorem in a plane,	07	(2:1:1.2.1)
		where C is the closed curve of the region bounded by $y = x$ and		
		$y = x^2$		
	c.	Evaluate $\vec{F} = (2x - y)i - yz^2j - y^2zk$ by Stoke's theorem, where	07	(2:1:1.2.1)
		S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$, C is its		
		boundary		
•		Module-2	0.6	(0.0.1.0.1)
3.	a.	Solve $\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 8y = 0$	06	(2:2:1.2.1)
	b.	Solve $\left(D^2 + 5D + 6\right)y = e^x$	07	(2:2:1.2.1)
			07	(2:2:1.2.1)
	c.	Solve $y'' - 4y' + 13y = \sin 2x$	07	(2:2:1:2:1)
		(OR)		
4.	a.	Use the method of variations of parameters to solve	06	(2:2:1.2.1)
		$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{2x}}{x^2}$		
	b.	Solve $x^2y'' + xy' + 9y = 3x^2 + \sin(3\log x)$	07	(2:2:1.2.1)

c. Solve
$$(2x+1)^2y'' - 6(2x+1)y' + 16y = 8(2x+1)^2$$
 07 (2:2:1.2.1)

Module-3

- 5. a. Find the Laplace transform of the following functions $e^{-2t}(2\cos 5t \sin 5t)$ (2:3:1.2.1)
 - **b.** Find the Laplace transform of the following functions $\frac{cosat-cosbt}{t}$ 07 (2:3:1.2.1)
 - c. Find the Laplace transform of the following functions $[e^{t-1} + \sin(t-1)]u(t-1) \tag{2:3:1.2.1}$

(OR)

- 6. a. Find the inverse Laplace transform of the following functions. 06 (2:3:1.2.1) $\frac{s+2}{s^2+36} + \frac{4s-1}{s^2+25}$
 - **b.** Using convolution theorem, obtain the inverse Laplace transform of the function $\frac{s}{(s^2+a^2)^2}$ (2:3:1.2.1)
 - c. Solve the initial value problem by using Laplace transforms $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = e^{-t}; y(0) = 0, y'(0) = 0$ (2:3:1.2.1)

Module-4

- 7. **a.** Use Newton-Raphson method to find the real root of the equation **06** (2:4:1.2.1) $x \sin x + \cos x = 0$ near $x = \pi$. Carry out three iterations.
 - b. Use Newton's forward interpolation formula to find f(38) 07 (2:4:1.2.1) x 40 50 60 70 80 90
 - From the following table find the number of students who have obtained (i) less than 45 marks (ii) between 40 and 45 marks by using interpolation formula. (2:4:1.2.1)

Marks	30-40	40-50	50-60	60-70	70-80	
No. of students	31	42	51	35	31	
(OR)						

- 8. a. Using Newton's divided difference formula find f(8), f(15) from the 06 (2:4:1.2.1) following data.

 - b. Evaluate $\int_0^1 \frac{dx}{1+x}$ taking seven ordinates by applying Simpson's 3/8th rule. 07 (2:4:1.2.1)

Hence deduce the value of log_e 2

Write a Scilab program to compute the area using Trapezoidal rule
 x
 y
 0
 y
 0.1
 y
 0.2
 y
 0.3
 y
 0.4
 y
 0.4
 y
 1.6
 1.8
 07

Module-5

- 9. a. Employ Taylor's series method to find y at x=0.1 given that $\frac{dy}{dx} 2y = 3e^x, y(0)=0$ (2:5:1.2.1)
 - **b.** Given $\frac{dy}{dx} = 1 + \frac{y}{x}$, y=2 at x=1, find y at x=1.2 taking h=0.2 by applying Modified Euler's method. (2:5:1.2.1)
 - c. Solve: $(y^2 x^2)dx = (y^2 + x^2)dy$ for x=0.2 given that y=1 at x=0 07 (2:5:1.2.1) by applying R-K method of order 4

(OR)

- 10. a. Use Taylor's series method to find y at x=0.1 considering terms up to 3^{rd} 06 (2:5:1.2.1) degree given that $\frac{dy}{dx} = x^2 + y^2$ and y (0) =1.
 - **b.** Using Modified Euler's method find y(0.1) correct to four decimal places of (2:5:1.2.1) solving the equation $\frac{dy}{dx} = x y^2$, y(0)=1 taking h= 0.1
 - c. Given $\frac{dy}{dx} = 3x + \frac{y}{2}$, y(0) = 1, compute y(0.2) by taking h=0.2 using R- 07 (2:5:1.2.1) K method of fourth order.

** ** **