Basavarajeswari Group of Institutions

2022 SCHEME

BALLARI INSTITUTE OF TECHNOLOGY & MANAGEMENT

(Autonomous Institute under Visvesvaraya Technological University, Belagavi)

USN						Course Code	2	2	P	H	Y	M	12	/	22

First/Second Semester B.E. Degree Summer Semester Examinations, September/October 2025

PHYSICS FOR MECHANICAL ENGINEERING STREAM

Duration: 3 hrs

Max. Marks: 100

- Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
 - 2. Handbook is permitted.
 - 3. Missing data, if any, may be suitably assumed.

<u>Q. No</u>		<u>Question</u>	<u>Marks</u>	(RBTL:CO:PI)	
		$\underline{\text{MODULE} - 1}$			
1.	a.	Define simple harmonic motion. Derive the equation for simple harmonic	08	(2:1:1.1.1)	
		motion using Hooke's law.			
	b.	With a neat diagram explain the construction and working of Reddy tube.	08	(2:1:1.1.1)	
		Mention any four applications of Shock waves.			
	c.	A man weighing 600 N steps on a spring scale machine, the spring in the	04	(3:1:1.2.1)	
		machine is compressed by 1 cm. Find the force constant of the spring.			
		(OR)			
2.	a.	What is spring constant? Obtain an expression for equivalent spring	08	(2:1:1.1.1)	
		constant for series and parallel combination.			
	b.	What are damped oscillations? Derive the expression for decaying	08	(2:1:1.1.1)	
		amplitude and hence discuss the case of critical damping.			
	c.	The distance between the two pressure sensors in a shock tube is 150	04	(3:1:1.2.1)	
		mm. The time taken by a shock wave to travel this distance is 0.3 ms. If			
		the velocity of sound under the same condition is 340 ms ⁻¹ . Find the			
		Mach number of the shock wave.			
		$\underline{\text{MODULE} - 2}$			
3.	a.	State Hooke's law. Briefly explain stress-strain curve.	08	(2:2:1.1.1)	
	b.	Derive the relation between Bulk modulus (K), Young's modulus (Y) and	08	(2:2:1.1.1)	
		Poisson's ratio. What are the limiting values of Poisson's ratio?			
	c.	Calculate the Poisson's ratio of steel given its Young's modulus = 2×10^{-2}	04	(3:2:1.2.1)	
		10^{11} N/m ² and rigidity modulus = 8.3×10^{10} N/m ² .			
4		(OR)	00	(2.2.1.1.1)	
4.	a.	Define bending moment. Derive the expression for bending moment in	08	(2:2:1.1.1)	
	1.	terms of moment of inertia.	00	(2.2.1.1.1)	
	b.	Define Young's modulus. Derive the expression for Young's modulus by	08	(2:2:1.1.1)	
		single cantilever.	0.4	(2.2.1.2.1)	
	c.	Calculate the extension produced in a wire of length 2 m and radius 0.013	04	(3:2:1.2.1)	
		\times 10 ⁻² m due to a force of 14.7 N applied along its length. (Given			
		Young's Modulus of the material of the wire, $Y = 2.1 \times 10^{11} \text{ N/m}^2$.			

MODULE - 3

5.	a.	Describe the construction and working of Thermo Electric Generators (TEG). Mention their applications.	08	(2:3:1.1.1)					
	b.	State Seeback effect and Peltier effect. Obtain the relation between	08	(2:3:1.1.1)					
		thermo emf and temperature.							
	c.	Describe thermopile.	04	(3:3:1.2.1)					
		(OR)							
6.	a.	Explain the construction and working of thermocouples. Mention their applications.	08	(2:3:1.1.1)					
	b.	Explain the working of thermoelectric coolers.	08	(2:3:1.1.1)					
	c.	State and explain laws of thermoelectricity.	04	(3:3:1.2.1)					
MODULE - 4									
7.	a.	Explain the Carnot's engine with a neat diagram.	10	(2:4:1.1.1)					
	b.	Explain how to calculate the spring constant by writing the diagram,	10	(3:5:1.2.1)					
		apparatus formulae, tabular column, and procedure.							
		(OR)							
8.	a.	Describe the Porous plug experiment.	10	(2:4:1.1.1)					
	b.	Write detail how to calculate with a circuit diagram and tabular column	10	(3:5:1.2.1)					
		required apparatus and determine the bandwidth and quality factor for							
		LCR series resonance frequency.							
9.		MODULE - 5	10	(2.4.1.1.1)					
9.	a.	Describe the construction & working of Transmission Electron Microscopy (TEM)	10	(2:4:1.1.1)					
	b.	Describe the experiment to determine wavelength of mercury source.	10	(3:5:1.2.1)					
		(OR)							
10.	a.	Describe the construction and working of X - ray diffractometer.	10	(2:4:1.1.1)					
	b.	Explain in detail how to calculate acceptance angle and numerical aperture of the optical fiber.	10	(3:5:1.2.1)					

** ** **