Basavarajeswari Group of Institutions

2022 SCHEME

BALLARI INSTITUTE OF TECHNOLOGY & MANAGEMENT

(Autonomous Institute under Visvesvaraya Technological University, Belagavi)

		(
US	N	Course Code 2 2 P	H Y	C 12 / 22	2
Fii	rst/Si	econd Semester B.E. Degree Summer Semester Examinations, Septe	ember/C	October 2025	.
1 11	ISU D	PHYSICS FOR CIVIL ENGINEERING STRE)Ct00C1 202.	,
Dur	ation	: 3 hrs		Iax. Marks: 10	00
Note	e: 1	. Answer any FIVE full questions, choosing ONE full question from each modul	e.		
		Handbook is permitted. Missing data, if any, may be suitably assumed.			
<u>Q. No</u>		<u>Question</u>	<u>Marks</u>	(RBTL:CO:P	' <i>I</i>)
		$\underline{\mathbf{MODULE} - 1}$			
1.	a.	Derive an expression for equivalent spring constant in series and parallel combination.	08	(2:1:1.1.1)	ı
	b.	Explain the theory of damped oscillation and explain its engineering applications.	08	(2:1:1.1.1)	1
	c.	A mass of 4.3 kg is attached to a spring of force constant 17 N/m. The mass spring system is executing SHM. Find the frequency of the external	04	(3:1:1.2.1)	ı
		force which excites resonance in the system. Ignore the mass of the			
		spring.			
		(OR)			
2.	a.	What are the types of spring? Explain with applications.	08	(2:1:1.1.1)	ı
	b.	Describe the construction and working of Reddy's shock tube with neat diagram.	08	(2:1:1.1.1)	l
	c.	A plain is moving with a speed of 380 km/hour, determine the Mach number and justify the type of flow.	04	(3:1:1.2.1)	ı
		$\underline{MODULE-2}$			
3.	a.	Explain the failures of engineering materials.	08	(2:2:1.1.1))
	b.	Derive the relation between Y, η and σ .	08	(2:2:1.1.1)	1
	c.	Calculate extension produced in a wire of length 2 m and radius 0.013×10^{-2} m due to a force of 14.7 N applied along its length, Given Young's modulus of the material of the wire $Y = 2.1\times10^{11}$ N/m ² . (OR)	04	(3:2:1.2.1)	1
4.	a.	Define bending moment and hence derive the expression for bending	08	(2:2:1.1.1))
		moment in terms of moment of inertia.			
	b.	Explain 'I' section girder and its engineering applications.	08	(2:2:1.1.1)	
	c.	Calculate the Poisson's ratio of steel given its young's modulus = 2×10^{11} N/m ² and rigidity modulus = 7.3×10^{11} N/m ²	04	(3:2:1.2.1)	ı
		MODULE - 3			

Note: (RBTL - Revised Bloom's Taxonomy Level: CO - Course Outcome: PI - Performance Indicator)

5.

Derive an expression for energy density in terms of Einstein coefficient.

(2:3:1.1.1)

08

	b.	Derive an expression for numerical aperture and acceptance angle.	08	(2:3:1.1.1)				
	c.	The average output power of laser source emitting a laser beam of	04	(3:3:1.2.1)				
	•	wavelength 632.5 nm is 5 mW. Find the number of photons emitted per	•	(0.0011211)				
		second by the laser source.						
(OR)								
6.	a.	Describe the construction and working of semiconductor laser with energy band diagram.	08	(2:3:1.1.1)				
	b.	Explain fibre optic displacement sensor with near diagram.	08	(2:3:1.1.1)				
	c.	The refractive index of the core and clad are 1.50 and 1.48 respectively in	04	(3:3:1.2.1)				
		an optical fibre. Find the numerical aperture and angle of acceptance.						
		MODULE - 4						
7.	a.	Define land slide. Mention the engineering solution for land slide.	05	(2:4:1.1.1)				
	b.	Explain the causes and characteristics of Tsunami.	05	(2:4:1.1.1)				
	c.	Define Fermi energy and explain the determination of Fermi energy of	10	(2:5:1.2.1)				
		copper using an experiment.						
		(OR)						
8.	a.	Explain Richter scale of measurement.	05	(1:4:1.1.1)				
	b.	What are forest fires? Explain the detection by using remote sensing.	05	(2:4:1.1.1)				
	c.	Define resonant frequency. Explain the determination of resonant	10	(2:5:1.2.1)				
		frequency and quality factor using LCR series and parallel circuits.						
		$\underline{MODULE-5}$						
9.	a.	Derive the relation between luminescence and radiant quantities.	05	(2:4:1.1.1)				
	b.	Derive Sabine's formula.	05	(2:4:1.1.1)				
	c.	Define Young's modulus. Explain the determination of Young's modulus	10	(2:5:1.2.1)				
		by single cantilever.						
(OR)								
10.	a.	Define acoustics. Mention the requisites for acoustics in auditorium.	05	(2:4:1.1.1)				
	b.	What are the requisites for acoustics in auditorium?	05	(2:4:1.1.1)				
	c.	Define optical fibre. Explain the determination of acceptance angle and numerical aperture of optical fibre.	10	(2:5:1.2.1)				

** ** **