BALLARI INSTITUTE OF TECHNOLOGY & MANAGEMENT

(Autonomous Institute under Visvesvaraya Technological University, Belagavi)

Second Semester MCA Degree Examinations, September 2025 DATA STRUCTURE AND ALGORITHMS

Duration: 3 hrs Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Missing data, if any, may be suitably assumed

<u>Q. No</u>		<u>Question</u>	<u>Marks</u>	(RBTL:CO: PI)
1.	a.	$\begin{tabular}{ll} \hline MODULE-1 \\ \hline What is abstract data structures? Describe briefly with its structure and characteristics. \\ \hline \end{tabular}$	10	(1.2.1:1:1)
	b.	Define recursion. Illustrate Towers of Honai using recursion functions. (OR)	10	(1.2.1:1:2)
2.	a.	What are multi-dimensional arrays? Describe the applications of arrays.	10	(1.2.1:1:1)
	b.	What is an array? Demonstrate insertion and traversing operations of an array with an algorithm.	10	(1.2.1:1:2)
$\underline{\text{MODULE} - 2}$				
3.	a.	Define queues. Elaborate its types and applications.	10	(2.2.1:2:2)
	b.	Define linked list. Explain the operations of linked list.	10	(2.2.1:2:1)
		(OR)		
4.	a.	Define stacks. Describe the operations along with algorithms.	10	(2.3.1:2:2)
	b.	Demonstrate the working of function calls using stack data structure.	10	(3.2.1:2:3)
_		MODULE – 3	10	(4.2.4.2.4)
5.	a.	Define BST. Demonstrate its operations with an algorithm.	10	(4.2.1:3:1)
	b.	Illustrate the Dijkstra's algorithm.	10	(5.3.1:3:2)
(_	(OR)	10	(5.2.2.2.2)
6.	a. b	Write short notes on AVL and B—Trees.	10 10	(5.2.2:3:2)
	b.	Demonstrate the working of DFS algorithm with an example.	10	(6.2.1:3:3)
-		<u>MODULE – 4</u>	10	(60141)
7.	a.	What is comparison sort? Demonstrate insertion sort for the following elements: 38, 47, 24, 32, 89	10	(6.2.1:4:1)
	b.	Describe briefly about Hashing technique.	10	(5.2.1:4:2)
(OR)				
8.	a.	Design the program to sort the elements using radix sort.	10	(4.2.1:4:3)
0.	b.	Design the program for finding an element using linear search.	10	(5.2.2:4:1)
	~•	$\frac{\text{MODULE} - 5}{\text{MODULE}}$		(0.2.2.1.2)
9.	a.	Define heap. Design a program of a heap sort.	10	(5.3.1:5:2)
7.	а. b.	What is the principle of divide and conquer? Describe it briefly.	10	(4.2.1:5:1)
		(OR)	10	(1.2.1.0.1)
10.	a.	Define tree. Describe its operations and applications.	10	(5.2.1:5:2)
-0.	b.	Briefly explain real world applications of data structures and algorithms.	10	(5.2.1:5:1)
	.5•	** **	_•	(= := := :=)