Basavarajeswari Group of Institutions

2022 SCHEME

BALLARI INSTITUTE OF TECHNOLOGY & MANAGEMENT

(Autonomous Institute under Visvesvaraya Technological University, Belagavi)

USN											Code 2		3	M	C	A	4	1	1
-----	--	--	--	--	--	--	--	--	--	--	--------	--	---	---	---	---	---	---	---

Fourth Semester MCA Degree Examinations, September 2025 INTRODUCTION TO DATA SCIENCE

Duration: 3 hrs Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Missing data, if any, may be suitably assumed

<u>Q. No</u>		<u>Question</u>	<u>Marks</u>	(RBTL:CO: PI)
		$\underline{MODULE-1}$		
1.	a.	Discuss the importance of data visualization in the field of data science.	10	(2:1:2.2.1)
		Explain any two common types of visualization.		
	b.	Define linear algebra and summarize the role of linear algebra in data	10	(2:1:3.2.2)
		science.		
_		(OR)		(2.4.2.4.2)
2.	a.	Describe the operations and use cases of matrices in data science and	10	(2:1:2.1.3)
		why they are important.		
	b.	What do you understand by the central limit theorem? Describe how it	10	(2:1:2.2.1)
		works.		
		MODULE – 2	4.0	(0.0.0.1.0)
3.	a.	Explain statistical hypothesis testing in the context of data science using	10	(2:2:2.1.3)
	L	an example.	10	(2.2.2.4.1)
	b.	Analyze the problem of p-hacking in statistical research. How can it be	10	(3:2:2.4.1)
		identified and prevented?		
		(OR)	40	(2.2.2.1.2)
4.	a.	How does gradient descent help in optimizing a machine learning model?	10	(3:2:2.1.3)
	_	Explain with its working process.		
	b.	Define web scraping. Describe how web scraping is done and discuss its	10	(2:2:1.2.1)
		use cases.		
		$\underline{MODULE - 3}$		
5.	a.	Compare and contrast feature extraction and feature selection in terms of	10	(4:3:2.3.2)
	_	various aspects.		
	b.	Discuss K-Nearest Neighbour (KNN). Explain its working with an	10	(2:3:2.2.1)
		example.		
_		(OR)	. -	, <u> </u>
6.	a.	What are the features and working principles of a more sophisticated	10	(2:3:2.3.2)
		spam filter? Discuss the email classification example.		
	b.	Give a brief overview of simple linear regression and describe the further	10	(2:3:2.1.3)
		assumptions associated with the least squares approach.		

MODULE – 4

7.	a.	Explain how random forests improve upon decision trees. What role does randomness play in their effectiveness?	10	(2:4:2.2.1)
	b.	What is a perceptron, and how does it function as the building block for neural networks?	10	(2:4:2.3.1)
		(OR)		
8.	a.	Discuss the purpose of using activation functions in neural networks.	10	(2:4:2.1.3)
		Give examples of commonly used ones.		
	b.	What is a tensor, and why is it the fundamental data structure in deep	10	(2:4:2.2.1)
		learning frameworks like PyTorch or Tensor Flow?		
		$\underline{MODULE-5}$		
9.	a.	How does eigenvector centrality differ from degree centrality? What does	10	(3:5:2.4.2)
		it imply if a node has high eigenvector centrality?		
	b.	Describe directed graph in the context of network analysis and explain	10	(2:5:2.1.2)
		why it matters?		
		(OR)		
10.	a.	What are the advantages and limitations of manual curation in	10	(2:5:2.3.2)
		recommender systems?		
	b.	Briefly describe user-based and item-based collaborative filtering	10	(2:5:2.3.1)
		techniques used in recommender systems.		

** ** **