BALLARI INSTITUTE OF TECHNOLOGY & MANAGEMENT

(Autonomous Institute under Visvesvaraya Technological University, Belagavi)

USN												2	2	P	H	Y	S	12	/	22
-----	--	--	--	--	--	--	--	--	--	--	--	---	---	---	---	---	---	----	---	----

First / Second Semester B.E. Degree Summer Semester Examinations, September/October 2025

PHYSICS FOR COMPUTER SCIENCE & ENGINEERING STREAM

Duration: 3 hrs

Max. Marks: 100

- Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
 - 2. Use of Physics Formula Handbook is permitted.
 - 3. Missing data, if any, may be suitably assumed.

<u>Q. No</u>		<u>Question</u>	<u>Marks</u>	(RBTL:CO:PI)
_		Module-1	00	(2 4 4 4 4)
1.	a.	Derive the expression for de-Broglie wavelength and extend to an	08	(2:1:1:1:1)
	h	electron particle. Define phase valuative and group valuative & honce derive the expression.	ΛQ	(2.1.1.1.1)
	b.	Define phase velocity and group velocity & hence derive the expression for group velocity.	08	(2:1:1:1:1)
	c.	Calculate de-Broglie wavelength of an electron accelerated under a	04	(3:1: 2: 1: 3)
		potential difference of 100 V.	04	(3.1. 2. 1. 3)
		(OR)		
2.	a.	Derive one-dimensional Schrödinger's wave equation.	08	(2:1:1:1:1)
	b.	Starting from Schrödinger's time independent wave equation, Derive the	08	(2:1:1:1:1)
		expression for energy Eigen values for an electron in one-dimensional		
		potential well of infinite height.		
	c.	An electron is bound in a one dimensional potential will of width $1 A^0$,	04	(3:1: 2: 1: 3)
		but of infinite height. Find its energy values in the ground state and also		
		in the first two excited states.		
		Module-2		
3.	a.	Explain the terms induced absorption, spontaneous emission and	08	(2:2:1:1:1)
		stimulated emission with energy level diagram.		
	b.	Explain the construction and working of semiconductor laser with neat	08	(2:2:1:1:1)
		diagrams.	0.4	(0.0.0.1.0.)
	c.	A pulsed laser has an average power output of 1.5 mW per pulse and the	04	(3:2:2: 1: 3)
		pulse duration is 20 ns. The number of photons emitted per pulse is		
		1.0472×10^8 . Find the wavelength of the emitted laser. (OR)		
4.	a.	Explain numerical aperture and acceptance angle and derive the relation	08	(2:2:1:1:1)
		for numerical aperture and acceptance angle of an optical fiber.		(= v=v= v= v =)
	b.	Describe different types of optical fibers with neat diagrams for	08	(2:2:1:1:1)
		geometry, refractive index profile and propagation of waves		
	c.	The refractive indices of core and cladding are 1.565 and 1.498	04	(3:2:2: 1: 3)
		respectively in an optical fiber. Calculate the numerical aperture and		
		acceptance angle.		

Module-3

5.	a.	State assumptions of classical free electron theory and explain three failures of CFET.	08	(2:3:1:1:1)
	b.	Explain Matthiessen's rule and derive equation for total resistivity in terms of mean collision time.	08	(2:3:1:1:1)
	c.	For an electron electric field is applied is 100 V/m, its drift velocity is 0.7 m/s, Calculate mobility of electron.	04	(3:3: 2: 1: 3)
		(OR)		
6.	a.	Describe superconductors into Soft and Hard superconductors using M-H graphs.	08	(2:3:1:1:1)
	b.	Explain Meglev vehicle and SQUID briefly.	08	(2:3:1:1:1)
	c.	Calculate the critical magnetic field at 1 K. For a metal If its critical temperature is 4.15 K, and the critical magnetic field at 0 K is 3.276×10^6 Am-1.	04	(3:3: 2: 1: 3)
		Module-4		
7.	a.	Discuss timing in linear motion, uniform motion, slow in and slow out.	05	(2:4:1:1:1)
	b.	Illustrate the odd rule and odd rule multipliers with a suitable example.	05	(2:4:1:1:1)
	c.	Define Fermi energy and explain determination of Fermi energy of a copper in the laboratory.	10	(2:5:1:1:1)
		(OR)		
8.	a.	Discuss single quantum interfacing with diagram.	05	(2:4:1:1:1)
	b.	Write difference between classical and Quantum computing.	05	(2:4:1:1:1)
	c.	What is Zener diode and explain determination of Knee voltage, Zener break down voltage and forward resistance in the laboratory.	10	(2:5:1:1:1)
		Module-5		
9.	a.	State Moor's law and discuss it end.	05	(2:4:1:1:1)
7.	а. b.	Write a brief note on Monte Carlo method	05	(2:4:1:1:1)
	с.	Define resonance and explain determination of resonant frequency and	10	(2:4:1:1:1) $(2:5:1:1:1)$
	C.	quality factor in series and parallel circuit in the laboratory.	10	(2 .5.1 .1 . 1)
		(OR)		
10.	a.	Discuss Hadamard gate and write its truth table.	05	(2:4:1:1:1)
10.	а. b.	Discuss phase gate and write truths table.	05	(2:4:1:1:1) (2:4:1:1:1)
	с.	What is transistor and explain determination input and output resistance	10	(2:5:1:1:1)
		and amplification factor in the laboratory.	_•	(= ·- ·- · -)

** ** **